Прикладные библиотеки

Последняя версия: 1.0.0-beta_spark_1

Дата:

Последняя версия: 1.0.0-beta_spark_1

Дата:

dl4j-perf

org.deeplearning4j : dl4j-perf

DeepLearning for java

Последняя версия: 1.0.0-beta6

Дата:

incal-dl4j

org.in-cal : incal-dl4j_2.11

Convenient wrapper of Deeplearning4J library especially for temporal classification.

Последняя версия: 0.3.0

Дата:

WSDL4J

org.lucee : wsdl4j

OSGi Version of WSDL4J

Последняя версия: 1.5.1

Дата:

dl4jgrapher

com.drissoft : dl4jgrapher_2.12

Generates Graphviz DOT files from DL4J MultiLayerNetworks and ComputationGraphs

Последняя версия: 0.1.0

Дата:

Последняя версия: 0.5.0

Дата:

Последняя версия: 0.4-rc3.8

Дата:

graphite-dl4j

net.savantly.learning : graphite-dl4j

Perform machine algorithms on graphite query results

Последняя версия: 1.0.0-RELEASE

Дата:

Последняя версия: 0.4.0

Дата:

Последняя версия: 1.0.0-beta_spark_2

Дата:

Последняя версия: 1.6.3.wso2v3

Дата:

Последняя версия: 1.1.0

Дата:

Последняя версия: 1.0.0-M1.1

Дата:

Последняя версия: 1.0.0-beta7

Дата:

Последняя версия: 0.4-rc3.9

Дата:

Последняя версия: 1.0.0-M1.1

Дата:

Последняя версия: 1.5.2

Дата:

ds4s-cdl4j

ai.minxiao : ds4s-cdl4j_2.11

Data Science for Scala: scala wrapper for dl4j.

Последняя версия: 0.1.2

Дата:

ELKI - Tutorial Algorithms

de.lmu.ifi.dbs.elki : elki-tutorial

ELKI - Tutorial Algorithms – Open-Source Data-Mining Framework with Index Acceleration

Последняя версия: 0.7.5

Дата:

ExcelKit

org.wuwz : ExcelKit

Excel导入导出工具(简单、好用且轻量级的海量Excel文件导入导出解决方案.)

Последняя версия: 2.0.2.1

Дата:

ELKI - Unit Test Core

de.lmu.ifi.dbs.elki : elki-test-core

ELKI - Unit Test Core – Open-Source Data-Mining Framework with Index Acceleration

Последняя версия: 0.7.5

Дата:

Последняя версия: 0.0.2

Дата:

com.nelkinda.japi:nelkinda-japi-parent

com.nelkinda.japi : nelkinda-japi-parent

Parent POM for building the entire JAPI repository.

Последняя версия: 0.0.2

Дата:

BsonMapper

me.welkinbai : BsonMapper

a light wrapper for mongo-java-driver Bson to convert POJO to Bson or in reverse

Последняя версия: 0.0.2

Дата:

Последняя версия: 0.0.2

Дата:

ExcelKit

com.wuwenze : ExcelKit

Excel导入导出工具(简单、好用且轻量级的海量Excel文件导入导出解决方案.)

Последняя версия: 2.0.72

Дата:

ELKI Data Mining Framework - Parent Project

de.lmu.ifi.dbs.elki : elki-project

ELKI is an open source (AGPLv3) data mining software written in Java. The focus of ELKI is research in algorithms, with an emphasis on unsupervised methods in cluster analysis and outlier detection. In order to achieve high performance and scalability, ELKI offers many data index structures such as the R*-tree that can provide major performance gains. ELKI is designed to be easy to extend for researchers and students in this domain, and welcomes contributions in particular of new methods. ELKI aims at providing a large collection of highly parameterizable algorithms, in order to allow easy and fair evaluation and benchmarking of algorithms.

Последняя версия: 0.7.1

Дата:

Последняя версия: 0.0.2

Дата:

ELKI - 3D Parallel Coordinate Trees Visualization

de.lmu.ifi.dbs.elki : elki-3dpc

ELKI - 3D Parallel Coordinate Trees Visualization – Open-Source Data-Mining Framework with Index Acceleration

Последняя версия: 0.7.5

Дата:

Последняя версия: 0.0.2

Дата:

Последняя версия: 0.0.2

Дата:

ELKI Data Mining Framework - Single-jar Bundle

de.lmu.ifi.dbs.elki : elki-bundle

ELKI is an open source (AGPLv3) data mining software written in Java. The focus of ELKI is research in algorithms, with an emphasis on unsupervised methods in cluster analysis and outlier detection. In order to achieve high performance and scalability, ELKI offers many data index structures such as the R*-tree that can provide major performance gains. ELKI is designed to be easy to extend for researchers and students in this domain, and welcomes contributions in particular of new methods. ELKI aims at providing a large collection of highly parameterizable algorithms, in order to allow easy and fair evaluation and benchmarking of algorithms.

Последняя версия: 0.7.1

Дата:

ELKI - LibSVM based extensions

de.lmu.ifi.dbs.elki : elki-libsvm

ELKI - LibSVM based extensions – Open-Source Data-Mining Framework with Index Acceleration

Последняя версия: 0.7.5

Дата:

ELKI - Documentation Utilities

de.lmu.ifi.dbs.elki : elki-docutil

ELKI - Documentation Utilities – Open-Source Data-Mining Framework with Index Acceleration

Последняя версия: 0.7.5

Дата:

commercetools-sdk-java-ml

com.commercetools.sdk : commercetools-sdk-java-ml

The e-commerce SDK from commercetools Composable Commerce for Java

Последняя версия: 8.10.0

Дата:

shijingsh-ai-jsat

com.github.shijingsh : shijingsh-ai-jsat

Sonatype helps open source projects to set up Maven repositories on https://oss.sonatype.org/

Последняя версия: 1.0.0

Дата:

jsatbuilder

hu.webarticum : jsatbuilder

SAT formula builder with constraint dependency tracking, written in Java

Последняя версия: 0.2

Дата:

Последняя версия: 0.1.2

Дата:

Последняя версия: 14.1

Дата:

Последняя версия: 0.0.17

Дата:

Последняя версия: 0.0.15

Дата:

Последняя версия: 1.0.4

Дата:

julielab-ranklib-mallet

de.julielab : julielab-ranklib-mallet

The Parent POM for all JULIE Lab projects.

Последняя версия: 1.0.0

Дата:

DMNBtext

nz.ac.waikato.cms.weka : DMNBtext

Class for building and using a Discriminative Multinomial Naive Bayes classifier. For more information see: Jiang Su,Harry Zhang,Charles X. Ling,Stan Matwin: Discriminative Parameter Learning for Bayesian Networks. In: ICML 2008', 2008.

Последняя версия: 1.0.2

Дата:

iterativeAbsoluteErrorRegression

nz.ac.waikato.cms.weka : iterativeAbsoluteErrorRegression

Provides a regression scheme that uses Schlossmacher's iteratively reweighted least squares method to fit a model that minimizes absolute error. The scheme can be used with any base learner in WEKA that performs least-squares regression

Последняя версия: 1.0.0

Дата:

racedIncrementalLogitBoost

nz.ac.waikato.cms.weka : racedIncrementalLogitBoost

Classifier for incremental learning of large datasets by way of racing logit-boosted committees. For more information see: Eibe Frank, Geoffrey Holmes, Richard Kirkby, Mark Hall: Racing committees for large datasets. In: Proceedings of the 5th International Conferenceon Discovery Science, 153-164, 2002.

Последняя версия: 1.0.2

Дата:

leastMedSquared

nz.ac.waikato.cms.weka : leastMedSquared

Implements a least median squared linear regression utilizing the existing weka LinearRegression class to form predictions. Least squared regression functions are generated from random subsamples of the data. The least squared regression with the lowest meadian squared error is chosen as the final model. The basis of the algorithm is Peter J. Rousseeuw, Annick M. Leroy (1987). Robust regression and outlier detection.

Последняя версия: 1.0.2

Дата:

simpleCART

nz.ac.waikato.cms.weka : simpleCART

Class implementing minimal cost-complexity pruning. Note when dealing with missing values, use "fractional instances" method instead of surrogate split method. For more information, see: Leo Breiman, Jerome H. Friedman, Richard A. Olshen, Charles J. Stone (1984). Classification and Regression Trees. Wadsworth International Group, Belmont, California.

Последняя версия: 1.0.2

Дата:

thresholdSelector

nz.ac.waikato.cms.weka : thresholdSelector

A metaclassifier that selecting a mid-point threshold on the probability output by a Classifier. The midpoint threshold is set so that a given performance measure is optimized. Currently this is the F-measure. Performance is measured either on the training data, a hold-out set or using cross-validation. In addition, the probabilities returned by the base learner can have their range expanded so that the output probabilities will reside between 0 and 1 (this is useful if the scheme normally produces probabilities in a very narrow range).

Последняя версия: 1.0.3

Дата: