okAlgo

Idiomatic Kotlin extensions for ojAlgo

Лицензия

Лицензия

MIT
Группа

Группа

org.ojalgo
Идентификатор

Идентификатор

okalgo
Последняя версия

Последняя версия

0.0.2
Дата

Дата

Тип

Тип

jar
Описание

Описание

okAlgo
Idiomatic Kotlin extensions for ojAlgo
Ссылка на сайт

Ссылка на сайт

https://github.com/optimatika/okAlgo
Система контроля версий

Система контроля версий

https://github.com/optimatika/okAlgo

Скачать okalgo

Как подключить последнюю версию

<!-- https://jarcasting.com/artifacts/org.ojalgo/okalgo/ -->
<dependency>
    <groupId>org.ojalgo</groupId>
    <artifactId>okalgo</artifactId>
    <version>0.0.2</version>
</dependency>
// https://jarcasting.com/artifacts/org.ojalgo/okalgo/
implementation 'org.ojalgo:okalgo:0.0.2'
// https://jarcasting.com/artifacts/org.ojalgo/okalgo/
implementation ("org.ojalgo:okalgo:0.0.2")
'org.ojalgo:okalgo:jar:0.0.2'
<dependency org="org.ojalgo" name="okalgo" rev="0.0.2">
  <artifact name="okalgo" type="jar" />
</dependency>
@Grapes(
@Grab(group='org.ojalgo', module='okalgo', version='0.0.2')
)
libraryDependencies += "org.ojalgo" % "okalgo" % "0.0.2"
[org.ojalgo/okalgo "0.0.2"]

Зависимости

compile (3)

Идентификатор библиотеки Тип Версия
org.jetbrains.kotlin : kotlin-stdlib jar 1.2.31
org.ojalgo : ojalgo jar 45.1.0
junit : junit jar 4.12

Модули Проекта

Данный проект не имеет модулей.

okAlgo

Idiomatic Kotlin extensions for ojAlgo, with some inspirations from PuLP.

Linear Algebra DSL

Below is an example of how to use the linear algebra DSL. In this particular example, we create a Markov chain to calculate the probability of 5 consecutive heads in 10 coin flips.

import org.ojalgo.okalgo.populate
import org.ojalgo.okalgo.primitivematrix
import org.ojalgo.okalgo.times

fun main() {
	
	val transitionMatrix = primitivematrix(rows = 6, cols = 6) {
		populate {row, col ->
			when {
				col == 0L -> .50
				row + 1L == col -> .50
				row == 5L && col == 5L -> 1.0
				else -> 0.0
			}
		}
	}

	println("\r\nTransition Matrix:")
	println(transitionMatrix)

	val toTenthPower = generateSequence(transitionMatrix) { it * transitionMatrix }.take(10).last()
	println("\r\nTransition Matrix Raised to 10th Power")
	println(toTenthPower)

	println("\r\nMARKOV CHAIN RESULT: ${toTenthPower[0,5]}")
}

// REFERENCE: https://www.quora.com/What-is-the-probability-of-getting-5-consecutive-heads-in-10-tosses-of-a-fair-coin

OUTPUT:

Transition Matrix:
org.ojalgo.matrix.PrimitiveMatrix < 6 x 6 >
{ { 0.5,	0.5,	0.0,	0.0,	0.0,	0.0 },
{ 0.5,	0.0,	0.5,	0.0,	0.0,	0.0 },
{ 0.5,	0.0,	0.0,	0.5,	0.0,	0.0 },
{ 0.5,	0.0,	0.0,	0.0,	0.5,	0.0 },
{ 0.5,	0.0,	0.0,	0.0,	0.0,	0.5 },
{ 0.5,	0.0,	0.0,	0.0,	0.0,	1.0 } }

Transition Matrix Raised to 10th Power
org.ojalgo.matrix.PrimitiveMatrix < 6 x 6 >
{ { 0.5546875,	0.267578125,	0.1298828125,	0.0634765625,	0.03125,	0.109375 },
{ 0.6015625,	0.287109375,	0.1376953125,	0.06640625,	0.0322265625,	0.140625 },
{ 0.7109375,	0.333984375,	0.1572265625,	0.07421875,	0.03515625,	0.2041015625 },
{ 0.9609375,	0.443359375,	0.2041015625,	0.09375,	0.04296875,	0.333984375 },
{ 1.5244140625,	0.693359375,	0.3134765625,	0.140625,	0.0625,	0.6015625 },
{ 2.78125,	1.2568359375,	0.5634765625,	0.25,	0.109375,	1.15625 } }

MARKOV CHAIN RESULT: 0.109375

MIP Solver DSL

EXAMPLE 1

expressionsbasedmodel {

    val v1 = variable(lower = 3, upper = 6)
    val v2 = variable(lower = 10, upper = 12)

    expression(weight = 1) {
        set(v1, 1)
        set(v2, 1)
    }

    maximise()

    println("v1=${v1.value.toDouble()} v2=${v2.value.toDouble()}")
}

EXAMPLE 2

val model = ExpressionsBasedModel()
        
val v1 = model.variable(lower = 3, upper = 6)
val v2 = model.variable(lower = 10, upper = 12)

model.expression(weight=1) {
    set(v1, 1)
    set(v2, 1)
}

model.maximise()

println("v1=${v1.value.toDouble()} v2=${v2.value.toDouble()}")

Expression building with Kotlin extensions is also being explored:

EXAMPLE 3

expressionsbasedmodel {

    val v1 = variable(lower = 2, upper = 10, isInteger = true)
    val v2 = variable(lower = 2, upper = 10, isInteger = true)

    expression(v1 + 2*v2) {
        weight(1)
    }

    expression {
        set(v1 + v2 EQ 16)
    }

    minimise().run(::println)

    println("v1=${v1.value.toDouble()} v2=${v2.value.toDouble()}")
}

Artifact Instructions

Until this gets deployed to Maven Central, you can use JitPack to import this project as a dependency.

Maven

<dependency>
    <groupId>org.ojalgo</groupId>
    <artifactId>okalgo</artifactId>
    <version>0.0.2</version>
</dependency>

Gradle

compile 'org.ojalgo:okalgo:0.0.2'
org.ojalgo

Optimatika

Версии библиотеки

Версия
0.0.2
0.0.1