paceRegression

Class for building pace regression linear models and using them for prediction. Under regularity conditions, pace regression is provably optimal when the number of coefficients tends to infinity. It consists of a group of estimators that are either overall optimal or optimal under certain conditions. The current work of the pace regression theory, and therefore also this implementation, do not handle: - missing values - non-binary nominal attributes - the case that n - k is small where n is the number of instances and k is the number of coefficients (the threshold used in this implmentation is 20) For more information see: Wang, Y (2000). A new approach to fitting linear models in high dimensional spaces. Hamilton, New Zealand. Wang, Y., Witten, I. H.: Modeling for optimal probability prediction. In: Proceedings of the Nineteenth International Conference in Machine Learning, Sydney, Australia, 650-657, 2002.

Лицензия

Лицензия

Категории

Категории

Weka Прикладные библиотеки Machine Learning
Группа

Группа

nz.ac.waikato.cms.weka
Идентификатор

Идентификатор

paceRegression
Последняя версия

Последняя версия

1.0.2
Дата

Дата

Тип

Тип

jar
Описание

Описание

paceRegression
Class for building pace regression linear models and using them for prediction. Under regularity conditions, pace regression is provably optimal when the number of coefficients tends to infinity. It consists of a group of estimators that are either overall optimal or optimal under certain conditions. The current work of the pace regression theory, and therefore also this implementation, do not handle: - missing values - non-binary nominal attributes - the case that n - k is small where n is the number of instances and k is the number of coefficients (the threshold used in this implmentation is 20) For more information see: Wang, Y (2000). A new approach to fitting linear models in high dimensional spaces. Hamilton, New Zealand. Wang, Y., Witten, I. H.: Modeling for optimal probability prediction. In: Proceedings of the Nineteenth International Conference in Machine Learning, Sydney, Australia, 650-657, 2002.
Ссылка на сайт

Ссылка на сайт

http://weka.sourceforge.net/doc.packages/paceRegression
Организация-разработчик

Организация-разработчик

University of Waikato, Hamilton, NZ

Скачать paceRegression

Как подключить последнюю версию

<!-- https://jarcasting.com/artifacts/nz.ac.waikato.cms.weka/paceRegression/ -->
<dependency>
    <groupId>nz.ac.waikato.cms.weka</groupId>
    <artifactId>paceRegression</artifactId>
    <version>1.0.2</version>
</dependency>
// https://jarcasting.com/artifacts/nz.ac.waikato.cms.weka/paceRegression/
implementation 'nz.ac.waikato.cms.weka:paceRegression:1.0.2'
// https://jarcasting.com/artifacts/nz.ac.waikato.cms.weka/paceRegression/
implementation ("nz.ac.waikato.cms.weka:paceRegression:1.0.2")
'nz.ac.waikato.cms.weka:paceRegression:jar:1.0.2'
<dependency org="nz.ac.waikato.cms.weka" name="paceRegression" rev="1.0.2">
  <artifact name="paceRegression" type="jar" />
</dependency>
@Grapes(
@Grab(group='nz.ac.waikato.cms.weka', module='paceRegression', version='1.0.2')
)
libraryDependencies += "nz.ac.waikato.cms.weka" % "paceRegression" % "1.0.2"
[nz.ac.waikato.cms.weka/paceRegression "1.0.2"]

Зависимости

compile (1)

Идентификатор библиотеки Тип Версия
nz.ac.waikato.cms.weka : weka-dev jar [3.7.1,)

test (2)

Идентификатор библиотеки Тип Версия
nz.ac.waikato.cms.weka : weka-dev test-jar [3.7.1,)
junit : junit jar 3.8.2

Модули Проекта

Данный проект не имеет модулей.

Версии библиотеки

Версия
1.0.2
1.0.1