не последняя версия
Последняя версия 1.0.2

nz.ac.waikato.cms.weka:leastMedSquared 1.0.1

Implements a least median squared linear regression utilizing the existing weka LinearRegression class to form predictions. Least squared regression functions are generated from random subsamples of the data. The least squared regression with the lowest meadian squared error is chosen as the final model. The basis of the algorithm is Peter J. Rousseeuw, Annick M. Leroy (1987). Robust regression and outlier detection.

Категории

Категории

Weka Прикладные библиотеки Machine Learning Square Financial
Группа

Группа

nz.ac.waikato.cms.weka
Идентификатор

Идентификатор

leastMedSquared
Версия

Версия

1.0.1
Тип

Тип

jar

Скачать leastMedSquared 1.0.1


<!-- https://jarcasting.com/artifacts/nz.ac.waikato.cms.weka/leastMedSquared/ -->
<dependency>
    <groupId>nz.ac.waikato.cms.weka</groupId>
    <artifactId>leastMedSquared</artifactId>
    <version>1.0.1</version>
</dependency>
// https://jarcasting.com/artifacts/nz.ac.waikato.cms.weka/leastMedSquared/
implementation 'nz.ac.waikato.cms.weka:leastMedSquared:1.0.1'
// https://jarcasting.com/artifacts/nz.ac.waikato.cms.weka/leastMedSquared/
implementation ("nz.ac.waikato.cms.weka:leastMedSquared:1.0.1")
'nz.ac.waikato.cms.weka:leastMedSquared:jar:1.0.1'
<dependency org="nz.ac.waikato.cms.weka" name="leastMedSquared" rev="1.0.1">
  <artifact name="leastMedSquared" type="jar" />
</dependency>
@Grapes(
@Grab(group='nz.ac.waikato.cms.weka', module='leastMedSquared', version='1.0.1')
)
libraryDependencies += "nz.ac.waikato.cms.weka" % "leastMedSquared" % "1.0.1"
[nz.ac.waikato.cms.weka/leastMedSquared "1.0.1"]