ml.dmlc:xgboost4j

JVM Package for XGBoost

Лицензия

Лицензия

Группа

Группа

ml.dmlc
Идентификатор

Идентификатор

xgboost4j
Последняя версия

Последняя версия

0.90
Дата

Дата

Тип

Тип

jar
Описание

Описание

JVM Package for XGBoost
Ссылка на сайт

Ссылка на сайт

https://github.com/dmlc/xgboost/tree/master/jvm-packages/xgboost4j

Скачать xgboost4j

Как подключить последнюю версию

<!-- https://jarcasting.com/artifacts/ml.dmlc/xgboost4j/ -->
<dependency>
    <groupId>ml.dmlc</groupId>
    <artifactId>xgboost4j</artifactId>
    <version>0.90</version>
</dependency>
// https://jarcasting.com/artifacts/ml.dmlc/xgboost4j/
implementation 'ml.dmlc:xgboost4j:0.90'
// https://jarcasting.com/artifacts/ml.dmlc/xgboost4j/
implementation ("ml.dmlc:xgboost4j:0.90")
'ml.dmlc:xgboost4j:jar:0.90'
<dependency org="ml.dmlc" name="xgboost4j" rev="0.90">
  <artifact name="xgboost4j" type="jar" />
</dependency>
@Grapes(
@Grab(group='ml.dmlc', module='xgboost4j', version='0.90')
)
libraryDependencies += "ml.dmlc" % "xgboost4j" % "0.90"
[ml.dmlc/xgboost4j "0.90"]

Зависимости

compile (6)

Идентификатор библиотеки Тип Версия
com.typesafe.akka : akka-actor_2.11 jar 2.3.11
com.esotericsoftware.kryo : kryo jar 2.21
org.scala-lang : scala-compiler jar 2.11.12
org.scala-lang : scala-reflect jar 2.11.12
org.scala-lang : scala-library jar 2.11.12
commons-logging : commons-logging jar 1.2

test (3)

Идентификатор библиотеки Тип Версия
junit : junit jar 4.11
com.typesafe.akka : akka-testkit_2.11 jar 2.3.11
org.scalatest : scalatest_2.11 jar 3.0.0

Модули Проекта

Данный проект не имеет модулей.

eXtreme Gradient Boosting

Build Status Build Status Build Status XGBoost-CI Documentation Status GitHub license CRAN Status Badge PyPI version Optuna Twitter

Community | Documentation | Resources | Contributors | Release Notes

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Kubernetes, Hadoop, SGE, MPI, Dask) and can solve problems beyond billions of examples.

License

© Contributors, 2019. Licensed under an Apache-2 license.

Contribute to XGBoost

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone. Checkout the Community Page.

Reference

  • Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016
  • XGBoost originates from research project at University of Washington.

Sponsors

Become a sponsor and get a logo here. See details at Sponsoring the XGBoost Project. The funds are used to defray the cost of continuous integration and testing infrastructure (https://xgboost-ci.net).

Open Source Collective sponsors

Backers on Open Collective Sponsors on Open Collective

Sponsors

[Become a sponsor]

NVIDIA

Backers

[Become a backer]

Other sponsors

The sponsors in this list are donating cloud hours in lieu of cash donation.

Amazon Web Services

ml.dmlc

Distributed (Deep) Machine Learning Community

A Community of Awesome Machine Learning Projects

Версии библиотеки

Версия
0.90
0.82
0.81
0.80
0.72